Improved Bounds on Security Reductions for Discrete Log Based Signatures

نویسندگان

  • Sanjam Garg
  • Raghav Bhaskar
  • Satyanarayana V. Lokam
چکیده

Despite considerable research efforts, no efficient reduction from the discrete log problem to forging a discrete log based signature (e.g. Schnorr) is currently known. In fact, negative results are known. Paillier and Vergnaud [PV05] show that the forgeability of several discrete log based signatures cannot be equivalent to solving the discrete log problem in the standard model, assuming the so-called one-more discrete log assumption and algebraic reductions. They also show, under the same assumptions, that, any security reduction in the Random Oracle Model (ROM) from discrete log to forging a Schnorr signature must lose a factor of at least √ qh in the success probability. Here qh is the number of queries the forger makes to the random oracle. The best known positive result, due to Pointcheval and Stern [PS00], also in the ROM, gives a reduction that loses a factor of qh. In this paper, we improve the negative result from [PV05]. In particular, we show that any algebraic reduction in the ROM from discrete log to forging a Schnorr signature must lose a factor of at least q h , assuming the one-more discrete log assumption. We also hint at certain circumstances (by way of restrictions on the forger) under which this lower bound may be tight. These negative results indicate that huge loss factors may be inevitable in reductions from discrete log to discrete log based signatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconditional Tightness Bounds for Generic Reductions: The Exact Security of Schnorr Signatures, Revisited

A long line of research investigates the existence of tight security reductions for the Schnorr signature scheme. Most of these works presented lower tightness bounds, most recently Seurin (Eurocrypt 2012) showed that under certain assumptions the non-tight security proof for Schnorr signatures by Pointcheval and Stern (Eurocrypt 1996) is essentially optimal. All previous works in this directio...

متن کامل

On Tight Security Proofs for Schnorr Signatures

The Schnorr signature scheme is the most efficient signature scheme based on the discrete logarithm problem and a long line of research investigates the existence of a tight security reduction for this scheme in the random oracle model. Almost all recent works present lower tightness bounds and most recently Seurin (Eurocrypt 2012) showed that under certain assumptions the non-tight security pr...

متن کامل

Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log

We provide evidence that the unforgeability of several discrete-log based signatures like Schnorr signatures cannot be equivalent to the discrete log problem in the standard model. This contradicts in nature well-known proofs standing in weakened proof methodologies, in particular proofs employing various formulations of the Forking Lemma in the random oracle Model. Our impossibility proofs app...

متن کامل

A Signature Scheme as Secure as the Diffie-Hellman Problem

We show a signature scheme whose security is tightly related to the Computational Diffie-Hellman (CDH) assumption in the Random Oracle Model. Existing discrete-log based signature schemes, such as ElGamal, DSS, and Schnorr signatures, either require non-standard assumptions, or their security is only loosely related to the discrete logarithm (DL) assumption using Pointcheval and Stern’s “forkin...

متن کامل

An Efficient CDH-Based Signature Scheme with a Tight Security Reduction

At Eurocrypt ’03, Goh and Jarecki showed that, contrary to other signature schemes in the discrete-log setting, the EDL signature scheme has a tight security reduction, namely to the Computational Diffie-Hellman (CDH) problem, in the Random Oracle (RO) model. They also remarked that EDL can be turned into an off-line/on-line signature scheme using the technique of Shamir and Tauman, based on ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008